Bis(dithiobiureto) $\mathbf{M}^{\text {II }}, \mathbf{M}=\mathbf{P t}, \mathbf{P d}$

By R.L.Girling and E.L. Amma
Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

(Received 3 March 1976; accepted 4 May 1976)

Abstract

S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{4}\right)_{2} \mathrm{M}, \mathrm{M}=\mathrm{Pd}\) or Pt , are isomorphous with identical cell parameters within experimental accuracy: orthorhombic, $P b c a ; Z=4 ; a=8 \cdot 804$ (2), $b=$ 12.170 (8), $c=10.463$ (7) $\AA ; \varrho_{o}=\varrho_{c}=2.28$ and 2.87 g cm^{-3}, respectively. The important structural features are a non-planar isolated $\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{4}\right)_{2} \mathrm{M}$ moiety with four-coordinate planar MS_{4} metal geometry and M-S distances of $2 \cdot 29 \AA$.

Introduction. Dithiobiuret, $\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{5}$, is an interesting ligand for transition metals: (1) It is closely related to the ligand MNT (maleonitriledithiolate) for which an extensive interesting redox chemistry has been developed (Schrauzer, 1969); (2) It has an abundance of non-bonding π electrons that may have important structural effects upon complexation (Girling \& Amma, 1968; Lüth, Hall, Spofford \& Amma, 1969); (3) It is closely related to the ligand biuret, yet appears to bind only via the S atom to metal whereas biuret binds through oxygens (Freeman, 1967) or O and N depending upon conditions; (4) In contrast to the reactions of biuret, this ligand readily loses a proton from the central N atom. We report here the structural details for the bis(dithiobiureto) Pd and Pt compounds which have significant structural differences from the analogous Ni compound (Lüth, Hall, Spofford \& Amma, 1969; Pignedoli, Peyronel \& Antolini, 1972). These differences will be discussed and correlated with the size and electronic structure of the metals elsewhere (Gash \& Amma, 1976).

Yellow-orange crystals of the above compounds were grown by recrystallization of the crude reaction products from 2:1 ethanol-water mixtures. This crude reaction mixture was prepared by combining 25 ml of a saturated aqueous solution $\left(80^{\circ} \mathrm{C}\right)$ of dithiobiuret with a like volume of $0.04 \mathrm{M}_{2} \mathrm{PdCl}_{4}$ or $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and heating to $80^{\circ} \mathrm{C}$ for approximately 15 min ; the product and some by-product precipitated overnight.

Source: Mo $K \alpha, \lambda=0.71068 \AA ; 2 \theta_{\text {max }}=66,62^{\circ} ; \theta-2 \theta$ scan on a Picker automated diffractometer, $\Delta 2 \theta=1 \cdot 4$, $1 \cdot 2^{\circ}$. Number of reflections: 2122, 1463 taken; 833, 464 non-zero. Rejection level $3 \times K\left(B_{1}+B_{2}\right)^{1 / 2}$ where $K=$ scaling of background time to scan time and is 2.09 and $7.20 ; \mu=22.9,144 \mathrm{~cm}^{-1}$, crystal size: $0.12 \times$ $0.10 \times 0.64 \mathrm{~mm} ; \quad 0.21 \times 0.16 \times 0.70 \mathrm{~mm} ; \quad R($ final $)=$ $0.046,0.056$; weighted $R=0.038,0.067$ respectively, for the Pd and Pt compounds.

Structure solution was by standard heavy-atom techniques and refinement was by full-matrix least-squares calculations. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ with weights determined from counting statistics. Scattering factors for $\mathrm{Pd}^{2+}, \mathrm{Pt}^{2+}$ and neutral N and C were from Cromer \& Waber (1965), those for H were from Stewart, Davidson \& Simpson (1965). The effects of anomalous dispersion were included in the structure factor calculations by addition to F_{c} (Ibers \& Hamilton, 1964). Values for Δf^{\prime} and $\Delta f^{\prime \prime}$ for Pd, Pt and S were those given by Cromer (1965).

All non-hydrogen thermal parameters were varied anisotropically, but hydrogen parameters were varied

Table 1. $\operatorname{Pd}\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{4}\right)_{2}$: final atomic positional and thermal parameters and estimated standard deviations
Positional parameters for the analogous Pt compound are not significantly different from those above; of course, the thermal parameters do differ. Numbers in parentheses here and in succeeding tables are estimated standard deviations in the least significant digits. A fixed parameter is indicated by (-). Anisotropic temperature factors are of the form:

	x	y	z	B or β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Pd	$0 \cdot 0000$ (-)	0.0000 (-)	0.0000 (-)	81 (1)	32 (1)	48 (1)	1 (1)	-1 (1)	-1 (1)
S(1)	0.0183 (2)	-0.1321 (1)	0.1565 (1)	165 (3)	34 (1)	57 (1)	-6(1)	-118 (2)	2 (1)
S(2)	$0 \cdot 1782$ (2)	0.1093 (1)	0.0959 (1)	103 (2)	47 (1)	59 (1)	-17(1)	1 (2)	2 (1)
C(1)	0.0309 (7)	-0.0686 (6)	$0 \cdot 3022$ (6)	85 (11)	42 (4)	53 (5)	0 (5)	-7 (5)	4 (3)
C(2)	0.1777 (7)	0.0931 (5)	$0 \cdot 2615$ (6)	58 (7)	36 (4)	58 (5)	-1 (4)	-17(5)	0 (4)
$\mathrm{N}(1)$	-0.0283 (10)	-0.1245 (9)	0.4003 (7)	176 (15)	61 (5)	62 (5)	-35 (7)	18 (8)	2 (4)
$\mathrm{N}(2)$	0.2707 (8)	$0 \cdot 1622$ (9)	$0 \cdot 3197$ (7)	121 (10)	52 (5)	69 (5)	-18(5)	-13 (7)	0 (4)
$\mathrm{N}(3)$	0.0974 (7)	0.0266 (4)	0.3373 (6)	83 (7)	45 (4)	60 (5)	-5 (4)	-4 (5)	-1 (3)
H(1)	-0.0562 (129)	-0.1010 (98)	$0 \cdot 4638$ (118)	$5 \cdot 8$ (43)					
H(2)	-0.0983 (132)	-0.1799 (103)	0.3646 (100)	6.0 (71)					
H(3)	0.2686 (70)	0.1549 (54)	0.3954 (61)	0.6 (23)					
H(4)	$0 \cdot 3169$ (128)	$0 \cdot 2093$ (99)	$0 \cdot 2770$ (109)	$6 \cdot 7$ (53)					

only isotropically. A final difference electron density map was qualitatively featureless. Final atomic positional and thermal parameters are in Table 1.* Interatomic distances and angles and their errors were computed with the parameters and variance-covariance matrix from the last cycle of least squares and are shown in Fig. 1.

Discussion. The structure may be described as isolated molecular units of $\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{4}\right)_{2} \mathrm{M}$, where M is Pt or Pd , with only van der Waals interactions between these units (Fig. 1). There is no evidence from interatomic distances of hydrogen bonding, of metal-metal interaction nor of any metal-adjacent ligand bonding (Fig. 2).

Table 2. Torsion angles about bonds in the $\mathrm{PdS}_{2} \mathrm{C}_{2} \mathrm{~N}$ ring

$\mathrm{Pd}-\mathrm{S}(1)$	$+41(2)^{\circ}$	$\mathrm{N}(3)-\mathrm{C}(2)$	$-23(6)^{\circ}$
$\mathrm{S}(1)-\mathrm{C}(1)$	$-35(4)$	$\mathrm{C}(2)-\mathrm{S}(2)$	$-3(4)$
$\mathrm{C}(1)-\mathrm{N}(3)$	$-3(6)$	$\mathrm{S}(2)-\mathrm{Pd}$	$+30(2)$

The metal lies on a crystallographic center of symmetry and is bound to four S atoms from two different ligands in a planar MS_{4} array. However, the entire molecule is not planar but distorted into a chair conformation as indicated by the torsion angles in Table 2. In addition, the S-M-S angles are not 90° but expanded to $92.65(7)^{\circ}$ within the chelate ring. The chelate S-S bite distance is also larger at $3 \cdot 319$ (2) \AA than is the interligand S-S distance at $3 \cdot 169$ (2) \AA. The M-S distance is only slightly shorter $(0.04 \AA)$ than that found in Pd, Pt complexes with thiourea (Berta, Spofford, Boldrini \& Amma, 1970; Girling \& Amma, 1968). It is interesting to note that even though the ligand is not planar in this complex, the individual $\left(S_{-C}^{-}-N\right)$ units are planar.

[^0]
References

Berta, D. A., Spofford, W. A., Boldrini, P. \& Amma, E. L. (1970). Inorg. Chem. 9, 136-142.

Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Freeman, H. C. (1967). Advanc. Protein Chem. 22, 257-424.
Gash, A. G. \& Amma, E. L. (1976). Inorg. Chem. To be published.
Girling, R. L. \& Amma, E. L. (1968). Chem. Commun. pp. 1487-1488.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.

Fig. 1. A perspective view of the $\mathrm{Pd}(\mathrm{Pt})\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{4}\right)_{2}$ molecule with relevant interatomic distances and angles. The metal site is a crystallographic center of symmetry, and therefore angles are on one half and distances on the other. The e.s.d.'s are: $\mathrm{M}-\mathrm{S} \pm 0.001, \mathrm{~S}-\mathrm{C} \pm 0.007, \mathrm{C}-\mathrm{N} \pm 0.01, \mathrm{~N}-\mathrm{H} \pm 0 \cdot 1$, $\mathrm{S}-\mathrm{S} \pm 0.002 \AA$, or less; for interatomic angles the e.s.d.'s are: $\mathrm{S}-\mathrm{M}-\mathrm{S} \pm 0.07, \quad \mathrm{M}-\mathrm{S}-\mathrm{C} \pm 0.2, \quad \mathrm{~S}-\mathrm{C}-\mathrm{N} \pm 0.6, \quad \mathrm{C}-\mathrm{N}-\mathrm{C} \pm 0.6$, $\mathrm{C}-\mathrm{N}-\mathrm{H} \pm 1 \cdot 0, \mathrm{H}-\mathrm{N}-\mathrm{H} \pm 1 \cdot 0^{\circ}$, or less.

Fig. 2. An ORTEP view of the contents of the unit cell. The origin is in the upper left-hand front corner and a 4° rotation in each direction has been effected to show overlap. The metal atoms (M) at $0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0$ and their unit translation equivalents have only the S atoms bound to them shown for clarity. However, for the metal atoms at $0, \frac{1}{2}, \frac{1}{2} ; \frac{1}{2}, 0, \frac{1}{2}$ and their translation equivalents the entire molecule is shown. The thermal ellipsoids are shown at the 50% probability level.
lüth, H., Hall, E. A., Spofford, W. A. \& Amma, E. L. (1969). Chem. Commun. pp. 520-521.

Pignedoli, A., Peyronel, G. \& Antolini, L. (1972). Gazz. Chim. Ital. 102, 679-686.
Schrauzer, G. N. (1969). Acc. Chem. Res. 2, 72-80.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

[^0]: * A list of structure factors and a table of the final atomic positional and thermal parameters for $\mathrm{M}=\mathrm{Pt}$ have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31865 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHl 1 NZ , England.

