Bis(dithiobiureto) M^{II} , M=Pt, Pd

BY R. L. GIRLING AND E. L. AMMA

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

(Received 3 March 1976; accepted 4 May 1976)

Abstract. $(S_2C_2N_3H_4)_2M$, M=Pd or Pt, are isomorphous with identical cell parameters within experimental accuracy: orthorhombic, *Pbca*; Z=4; a=8.804 (2), b= 12.170 (8), c=10.463 (7) Å; $\rho_o = \rho_c = 2.28$ and 2.87 g cm⁻³, respectively. The important structural features are a non-planar isolated $(S_2C_2N_3H_4)_2M$ moiety with four-coordinate planar MS₄ metal geometry and M–S distances of 2.29 Å.

Introduction. Dithiobiuret, $S_2C_2N_3H_5$, is an interesting ligand for transition metals: (1) It is closely related to the ligand MNT (maleonitriledithiolate) for which an extensive interesting redox chemistry has been developed (Schrauzer, 1969); (2) It has an abundance of non-bonding π electrons that may have important structural effects upon complexation (Girling & Amma, 1968; Lüth, Hall, Spofford & Amma, 1969); (3) It is closely related to the ligand biuret, yet appears to bind only via the S atom to metal whereas biuret binds through oxygens (Freeman, 1967) or O and N depending upon conditions; (4) In contrast to the reactions of biuret, this ligand readily loses a proton from the central N atom. We report here the structural details for the bis(dithiobiureto) Pd and Pt compounds which have significant structural differences from the analogous Ni compound (Lüth, Hall, Spofford & Amma, 1969; Pignedoli, Peyronel & Antolini, 1972). These differences will be discussed and correlated with the size and electronic structure of the metals elsewhere (Gash & Amma, 1976).

Yellow-orange crystals of the above compounds were grown by recrystallization of the crude reaction products from 2:1 ethanol-water mixtures. This crude reaction mixture was prepared by combining 25 ml of a saturated aqueous solution (80° C) of dithiobiuret with a like volume of 0.04 *M* K₂PdCl₄ or K₂PtCl₄ and heating to 80 °C for approximately 15 min; the product and some by-product precipitated overnight.

Source: Mo $K\alpha$, $\lambda = 0.71068$ Å; $2\theta_{max} = 66$, 62° ; $\theta - 2\theta$ scan on a Picker automated diffractometer, $\Delta 2\theta = 1.4$, 1.2° . Number of reflections: 2122, 1463 taken; 833, 464 non-zero. Rejection level $3 \times K(B_1 + B_2)^{1/2}$ where K=scaling of background time to scan time and is 2.09 and 7.20; $\mu = 22.9$, 144 cm⁻¹, crystal size: $0.12 \times$ 0.10×0.64 mm; $0.21 \times 0.16 \times 0.70$ mm; R(final) =0.046, 0.056; weighted R = 0.038, 0.067 respectively, for the Pd and Pt compounds.

Structure solution was by standard heavy-atom techniques and refinement was by full-matrix least-squares calculations. The function minimized was $\sum w(F_o - F_c)^2$ with weights determined from counting statistics. Scattering factors for Pd²⁺, Pt²⁺ and neutral N and C were from Cromer & Waber (1965), those for H were from Stewart, Davidson & Simpson (1965). The effects of anomalous dispersion were included in the structure factor calculations by addition to F_c (Ibers & Hamilton, 1964). Values for $\Delta f'$ and $\Delta f''$ for Pd, Pt and S were those given by Cromer (1965).

All non-hydrogen thermal parameters were varied anisotropically, but hydrogen parameters were varied

Table 1. $Pd(S_2C_2N_3H_4)_2$: final atomic positional and thermal parameters and estimated standard deviations

Positional parameters for the analogous Pt compound are not significantly different from those above; of course, the thermal parameters do differ. Numbers in parentheses here and in succeeding tables are estimated standard deviations in the least significant digits. A fixed parameter is indicated by (-). Anisotropic temperature factors are of the form:

$$\exp\left[-\left(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right) \times 10^{-4}\right]$$

	x	у	Z	<i>B</i> or β_{11}	β22	β_{33}	β_{12}	β_{13}	β23
Pd	0.0000(-)	0.0000(-)	0.0000(-)	81 (1)	32 (1)	48 (1)	1 (1)	-1(1)	-1(1)
S(1)	0·0183 (2)	-0.1321(1)	0·1565 (Ì)́	165 (3)	34 (1)	57 (1)	-6(1)	-118 (2)	2 (1)
S(2)	0.1782(2)	0.1093 (1)	0.0959 (1)	103 (2)	47 (1)	59 (1)	-17(1)	1 (2)	2 (1)
C(1)	0.0309 (7)	−0.0686 (6)	0.3022 (6)	85 (11)	42 (4)	53 (5)	0 (5)	-7 (5)	4 (3)
C(2)	0.1777 (7)	0.0931 (5)	0.2615 (6)	58 (7)	36 (4)	58 (5)	-1 (4)	-17 (5)	0 (4)
N(1)	-0.0283 (10)	-0.1245(6)	0.4003 (7)	176 (15)	61 (5)	62 (5)	-35 (7)	18 (8)	2 (4)
N(2)	0.2707 (8)	0.1622 (6)	0.3197 (7)	121 (10)	52 (5)	69 (5)	-18(5)	-13 (7)	0 (4)
N(3)	0.0974 (7)	0.0266 (4)	0.3373 (6)	83 (7)	45 (4)	60 (5)	-5(4)	-4 (5)	-1(3)
H(1)	-0.0562 (129)	-0.1010 (98)	0.4638 (118)	5.8 (43)		• •		-	
H(2)	-0.0983 (132)	-0·1799 (103)	0.3646 (100)	6.0 (71)					
H(3)	0.2686 (70)	0.1549 (54)	0.3954 (61)	0.6 (23)					
H(4)	0.3169 (128)	0.2093 (99)	0.2770 (109)	6.7 (53)					

only isotropically. A final difference electron density map was qualitatively featureless. Final atomic positional and thermal parameters are in Table 1.* Interatomic distances and angles and their errors were computed with the parameters and variance-covariance matrix from the last cycle of least squares and are shown in Fig. 1.

Discussion. The structure may be described as isolated molecular units of $(S_2C_2N_3H_4)_2M$, where M is Pt or Pd, with only van der Waals interactions between these units (Fig. 1). There is no evidence from interatomic distances of hydrogen bonding, of metal-metal interaction nor of any metal-adjacent ligand bonding (Fig. 2).

Table 2. Torsion angles about bonds in the PdS_2C_2N ring

PdS(1)	$+41(2)^{\circ}$	N(3)-C(2)	$-23(6)^{\circ}$
S(1) - C(1)	- 35 (4)	C(2) - S(2)	-3(4)
C(1)-N(3)	-3 (6)	S(2)-Pd	+30(2)

The metal lies on a crystallographic center of symmetry and is bound to four S atoms from two different ligands in a planar MS₄ array. However, the entire molecule is not planar but distorted into a chair conformation as indicated by the torsion angles in Table 2. In addition, the S-M-S angles are not 90° but expanded to 92.65 (7)° within the chelate ring. The chelate S-S bite distance is also larger at 3.319 (2) Å than is the interligand S-S distance at 3.169 (2) Å. The M-S distance is only slightly shorter (0.04 Å) than that found in Pd, Pt complexes with thiourea (Berta, Spofford, Boldrini & Amma, 1970; Girling & Amma, 1968). It is interesting to note that even though the ligand is not planar in this complex, the individual (S-C < N N) units are planar.

* A list of structure factors and a table of the final atomic positional and thermal parameters for M=Pt have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31865 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

References

- BERTA, D. A., SPOFFORD, W. A., BOLDRINI, P. & AMMA, E. L. (1970). *Inorg. Chem.* 9, 136-142.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104–109.
- FREEMAN, H. C. (1967). Advanc. Protein Chem. 22, 257-424.
- GASH, A. G. & AMMA, E. L. (1976). *Inorg. Chem.* To be published.
- GIRLING, R. L. & AMMA, E. L. (1968). Chem. Commun. pp. 1487–1488.
- IBERS, J. A. & HAMILTON, W. C. (1964). Acta Cryst. 17, 781–782.

Fig. 1. A perspective view of the Pd(Pt) $(S_2C_2N_3H_4)_2$ molecule with relevant interatomic distances and angles. The metal site is a crystallographic center of symmetry, and therefore angles are on one half and distances on the other. The e.s.d.'s are: $M-S \pm 0.001$, $S-C \pm 0.007$, $C-N \pm 0.01$, $N-H \pm 0.1$, $S-S \pm 0.002$ Å, or less; for interatomic angles the e.s.d.'s are: $S-M-S \pm 0.07$, $M-S-C \pm 0.2$, $S-C-N \pm 0.6$, $C-N-C \pm 0.6$, $C-N-H \pm 1.0$, $H-N-H \pm 1.0^\circ$, or less.

Fig. 2. An ORTEP view of the contents of the unit cell. The origin is in the upper left-hand front corner and a 4° rotation in each direction has been effected to show overlap. The metal atoms (M) at 0,0,0; $\frac{1}{2}$, $\frac{1}{2}$,0 and their unit translation equivalents have only the S atoms bound to them shown for clarity. However, for the metal atoms at $0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}$ and their translation equivalents the entire molecule is shown. The thermal ellipsoids are shown at the 50% probability level.

- LÜTH, H., HALL, E. A., SPOFFORD, W. A. & AMMA, E. L. (1969). Chem. Commun. pp. 520–521.
- PIGNEDOLI, A., PEYRONEL, G. & ANTOLINI, L. (1972). Gazz. Chim. Ital. 102, 679–686.
- SCHRAUZER, G. N. (1969). Acc. Chem. Res. 2, 72-80.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.